

A Proposed New Framework for SEARCH*

Broader communities - scientific community, stakeholder groups, public, private sector

SEARCH's 5-year goals

- 1. Document and understand how degradation of nearsurface permafrost will affect Arctic and global systems
- 2. Improve predictions of future land-ice loss and impacts on sea level
- 3. Analyze societal and policy implications of Arctic environmental change
- 4. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice

Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice

- Improve the understanding of atmosphere, sea-ice, and ocean system interactions through a combination of enhanced observations and process-based modeling studies
- Explore the consequences of a seasonally ice-free Arctic Ocean across human and natural systems
- Assess how Arctic sea-ice changes interact with midlatitude weather and climate
- Improve sea ice **prediction** from daily to decadal timescales

Action Team: Ice-Diminished Arctic Ocean

Action Team Co-Leaders: J. Francis and TBD (Arctic biologist/ecologist)

International Sea Ice Prediction Network (J. Stroeve and C. Bitz):

- Sea ice prediction from synoptic to interannual timescales
- Builds on SEARCH Sea Ice Outlook, Sea Ice for Walruses Outlook, and various other efforts
- Includes societal and ecological consequences
- ➢ Observations ⇔ models

Towards a sea ice prediction network

Timescale and regional scale Weather (1h - 20d)Seasonal to interannual (21d – 3yr) Decadal (>3 yr) Local to regional Regional to pan-Arctic Pan-Arctic Bering Strait Summer ice extent, June 24 June 29 1979-2000 Average July 4 1980 2000 2020 SIO Year SIWO IASC/WCRP This project Network activities

Coordinate & evaluate predictions, integrate, assess & guide observations; synthesize predictions & observations; disseminate predictions & engage stakeholders

Outcomes

Scientific community

- New methods
- Improved models
- New standard datasets
- Synthesis

Agencies & Stakeholders

- Testbed to build best practices
- Defined limits of predictability
- New, improved information products •Accessible data &
- Safer, more economical operations

Public

- Expand SIO/SIWO approach
- comparisons
- Engage citizen scientists

Prediction Network Goals for Modeling (UW Lead)

- ➤ To determine realistic expectations for predictability of Arctic sea-ice at regional and local scales. Convey these expectations to stakeholders
- ➤ To create a community of modelers -- both statistical and physical approaches
- To improve sea ice models for prediction
- ➤ To optimize observations of the Arctic system to best inform sea ice prediction
- To make sea ice forecasts that include estimates of uncertainty

Sea Ice Outlook – Regional (A. Tivy 2012)

Sea Ice Concentration Anomaly Outlook

Period: September 2012 Issued: January 15, 2012

Based on 3-equiprobable categories from 1980-2011 climatology

Historical Percent Correct (1980-2011) 6-month sea ice concentration anomaly forecast

Lindsay et al. (2012)

- Ensemble forecasts with PIOMAS coupled ice-ocean model
- Difference between unconstrained & thicknessinitialized model run (top): anomalously thick ice in Chukchi Sea
- Difference between unconstrained (green), corrected (red) & observed (black) September ice extent

Learn more about SEARCH at www.arcus.org/SEARCH

SEARCH Science Steering Committee

Hajo Eicken (chair)
Caspar Ammann
Uma Bhatt
Robert Bindschandler
Breck Bowden
Susan Crate

Larry Hamilton
Janet Intrieri
George Kling
David McGuire
Karen Pletnikoff
Stephen Vavrus

Additional slides

Prediction Network Modeling Activities

- Organize a action teams to coordinate and evaluate seasonal-to-interannual predictions
 - Design intercomparison projects of hindcast and other experiments to improve understanding of sea ice prediction and identify model deficiencies
 - Develop skill metrics tailored to evaluate sea ice predictions in collaboration with observationists
 - Design experiments that investigate how best to initialize models
 - Design experiments that can identify and evaluate types of observations that improve prediction

Prediction Network Modeling Activities

- Organize a action teams to coordinate and evaluate seasonal-to-interannual predictions
 - Review the Sea Ice Outlooks in previous years
 - Analyze available model output and observations to determine if the last five years in the Arctic are the new normal
 - Evaluate strengths and weaknesses of different prediction approaches
 - Explore how to combine methods to improve predictions

